On the fundamental solution for the real Monge-Ampère operator
نویسندگان
چکیده
منابع مشابه
Discretization of functionals involving the Monge-Ampère operator
Gradient flows in the Wasserstein space have become a powerful tool in the analysis of diffusion equations, following the seminal work of Jordan, Kinderlehrer and Otto (JKO). The numerical applications of this formulation have been limited by the difficulty to compute the Wasserstein distance in dimension > 2. One step of the JKO scheme is equivalent to a variational problem on the space of con...
متن کاملContinuity Estimates for the Monge-Ampère Equation
In this paper, we study the regularity of solutions to the Monge-Ampère equation. We prove the log-Lipschitz continuity for the gradient under certain assumptions. We also give a unified treatment for the continuity estimates of the second derivatives. As an application we show the local existence of continuous solutions to the semi-geostrophic equation arising in meteorology.
متن کاملQuaternionic Monge-ampère Equations
The main result of this paper is the existence and uniqueness of solution of the Dirichlet problem for quaternionic Monge-Ampère equations in quaternionic strictly pseudoconvex bounded domains in H. We continue the study of the theory of plurisubharmonic functions of quaternionic variables started by the author at [2].
متن کاملSobolev Regularity for Monge-Ampère Type Equations
In this note we prove that, if the cost function satisfies some necessary structural conditions and the densities are bounded away from zero and infinity, then strictly c-convex potentials arising in optimal transportation belong to W 2,1+κ loc for some κ > 0. This generalizes some recents results [10, 11, 24] concerning the regularity of strictly convex Alexandrov solutions of the Monge-Ampère...
متن کاملC0 penalty methods for the fully nonlinear Monge-Ampère equation
In this paper, we develop and analyze C0 penalty methods for the fully nonlinear Monge-Ampère equation det(D2u) = f in two dimensions. The key idea in designing our methods is to build discretizations such that the resulting discrete linearizations are symmetric, stable, and consistent with the continuous linearization. We are then able to show the well-posedness of the penalty method as well a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 1998
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-13859